
2024-05-22 Working Paper - Designing a Syntax for
SWIB

Goal

The ultimate goal is to figure out some sort of syntax for receptors and to design
an IDE that makes it easy to create Python programs using diagrams.

This work stems from the desire to convert diagrams drawn using draw.io into
JSON containing only semantically interesting information, while discarding all of 1

the graphical layout information.

Why?
I believe that we need to break free of the function-based programming mindset. 2

Using functions to express computations is OK, whereas using the same notation,
makes expression of some concepts more difficult.

Concurrency and state machines are concepts that become confusing when
expressed in function-based form.

I draw inspiration from an older parsing language called S/SL , from a newer 3

parsing language called OhmJS and from Harel’s StateCharts .
4 5

 A hand-built version of such a translator is in 0d/das2json/. The goal here is to re-build this 1

converter app using software components (“0D”).

 Function-based programming is the idea of using a written, function-based notation to 2

express the operation of CPU-based electronic machines. This idea was calcified as early as
1954 in the FORTRAN programming language (and 1956 in Lisp). CPUs are step-wise
sequencers, whereas mathematics is expressed in the form of continuous functions. Some of
the capabilities of CPUs are lost when function-based notation is mapped onto the operation
of CPU-based hardware. This is especially evident when dealing with concurrency. Functions
can express the innards of single nodes in a network, but, functional notation is strained
beyond its sweet spot when the notation is used to express the composition of networks
containing multiple nodes.

 see https://guitarvydas.github.io/2024/01/06/References.html3

 ohmjs.org4

 see https://guitarvydas.github.io/2023/11/27/Statecharts-Papers-We-Love-Video.html5

1

http://ohmjs.org
https://guitarvydas.github.io/2023/11/27/Statecharts-Papers-We-Love-Video.html
https://guitarvydas.github.io/2024/01/06/References.html
http://draw.io

OhmJS almost does everything I need, except that it builds a full parse tree
before calling any semantics code. At some point the input generates a parse tree
that is too large to fit in memory and the process fails. The DSL proposed here
does a parse and invokes code along the way, instead of building a parse tree
automatically. This approach has the benefit that it can parse large input source in
a streaming manner - on-the-fly - but, has the disadvantage that the process is
irreversible by default, i.e. undo and time-reversing don’t fall neatly out of this
approach.

I believe in writing code that writes code. I want to have a parser generator not a
language specification. In my opinion, PEG-based technologies are more powerful
for building parser generators than CFG -based technologies.  6

 Context Free Grammar - YACC and its descendants. Regular Expressions are a constrained 6

form of CFGs (REGEXs lack a stack, no PDFA) and are, thus, even less suitable for this
endeavour.

2

Composing Software using SoftWare Interlocking Blocks (SWIBs)

It is straight-forward to compose software if you use totally-isolated black boxes.

To achieve total isolation, data must be isolated and control flow must be
isolated. Most existing programming languages, e.g. Python, Rust, etc., do not
isolate both dimensions.

UNIX® command pipelines, and processes in operating systems, do isolate
control flow, but, are generally thought to be very heavy weight.

When control flow is fully isolated, the system must use a scheduler to choose -
randomly - which software unit to execute. Units cannot be written to rely on an
expected order of execution. Units are not executed in a sequential order.

Programmers currently possess the technology to build systems this way, i.e.
using closures and using the ability to create queue data structures, but,
programmers tend to shy away from this form of composition due to their
function-based, sequential mindset and the belief that processes are inherently
heavy-weight.

In fact, processes in operating systems are just closures written in assembler and
C .  7

 see Greenspun’s 10 Rule.7

3

Step 1 - A Parser for XML in Raw Python

As a first step in this process, I created a tentative syntax for the parsing DSL. It
looks a lot like S/SL, with the added feature that it can inhale strings containing
many characters.

I snipped the design parameters for the parser, such that it is meant only to work
with strings - not general data structures or lists. In my experience, this
simplification covers most use-cases for t2t transpilation. I’ve been using this
simplification - strings only - for several years and haven’t yet found it to be
lacking in power.

Each rule in the DSL creates a string and returns it. Each rule starts out with an
empty string. Characters are appended to the string as the parse progresses.
There are 2 types of rules - (1) those which simply return the generated string
“^=“, and, (2) those which call a rewriting function on the generated string, “@=“,
returning the result of the rewrite. At present, only 2 rewrite operations are
allowed - (1) return the string, (2) discard the string. In the future, I imagine that
the rewrite rules with use the more general string construction and string
interpolation found in RWR .
8

The parser uses a stack of strings, creating fresh (empty) strings every time a rule
is dynamically called.

I manually built a parser for XML in Python .
9

Then, I wrote an OhmJS application that automatically converts the DSL syntax
into Python code. I call this process t2t, for text-to-text transpilation.

The resulting app inhales a .drawio XML file and exhales the same without any
changes, i.e. an identity transform. The output, itself, is uninteresting, but, the
fact that the parser survives and works is interesting.

This work can be found in the repo https://github.com/guitarvydas/das2json on
branch main. Running make from the command line does a t2t translation of

 It’s likely that I haven’t documented the RWR operations. Email me if you have difficulty 8

understanding RWR rewrite rules and want to know.

 I would have used Common Lisp, but, I think that more programmers are frightened by CL.9

4

https://github.com/guitarvydas/das2json

das2json.swib converting it into a Python program called das2json.py. The t2t
converter code is written in DPL form in the file das2json.drawio. The output of 10

that step is a Python program. Make then runs this Python program with input from
the file test.drawio. The makefile rule compileswib creates the Python program
and the rule run runs the python program.

The tentative syntax for the parsing DSL is in the file das2json.swib, where it is
used to express the operation of an XML parser.

At this moment, the XML parser is specified as...

: Das2json @=
 _trace "@0"
 XML Spaces _end

: XML ^=
 Spaces "<" Name Attributes
 [
 | ">": Content "</" Stuff ">"
 | "/>":
]

: Content ^=
 <<<
 Spaces
 [*
 | "</": _break
 | "<mxGeometry ": mxGeometry
 | "<": XML
 | *: Stuff
]
 >>>

: mxGeometry @= XML

: Attributes ^=
 <<<
 [*
 | "style=": Style
 | ">": _break
 | "/>": _break
 | _end: _break
 | *: .
]
 >>>

 Diagramming Programming Language10

5

: Style @= "style=" String

: Name ^=
 <<<
 [*
 | " ": _break
 | "\t": _break
 | "\n": _break
 | ">": _break
 | "<": _break
 | "/>": _break
 | _end: _break
 | *: .
]
 >>>

: Stuff ^=
 <<<
 [*
 | ">": _break
 | "<": _break
 | "/>": _break
 | _end: _break
 | *: .
]
 >>>

: Spaces ^=
 <<<
 [*
 | " ": .
 | "\t": .
 | "\n": .
 | *: _break
]
 >>>

: String ^=
 "\"" NotDquotes "\""

: NotDquotes ^=
 <<<
 [*
 | "\"": _break
 | *: .
]
 >>>

: EndMxCell @= "</mxCell>" Spaces

6

@ Das2json = _return_value
@ mxGeometry = _ignore_value
@ Style = _ignore_value

“_” is used as a prefix to builtin functions and DSL keywords.

The last 3 lines specify rewrite lines that are associated with “@=“ rules. At
present, only 2 rewrite operations are supported - return the generated string, and
ignore the generated string.  

7

Step 2. Iterate, Design a New SWIB Receptor Syntax

⊢ Sampler ⊣

: Sampler ^=
 Stuff _end

: Stuff ^=
 <<<
 [*
 | "Hello World": Hello
 | _end: _break
 | *: .
]
 >>>

: Hello ^=
 "Hello World”

The first line is intended to specify a pipeline of parsers. This example pipeline
contains only one parser (receptor) - Sampler.

<<< ... >>> specifies a cycle which can be exit with an _break operation.

[* | ... | ... |*:] specifies a look ahead choice (peek), each branch beginning with “|”
and a string to be matched, followed by “:” and a sequence of matching
operations. The “else” branch contains the symbol “*” instead of a lookahead
string.

The first branch which matches is fired. If no branch is matched, an error is
signalled.

A matching operation can be:

- A string to be matched exactly. Once matched, it is appended to the generated
string of the enclosing rule.

- A rule name, to be called. The returned string is appended to the generated
string of the calling rule.

- “.” To accept any character and to append it to the generated string.

- “_end” which succeeds only if the end of the input stream has been reached.

8

9

Step 3. Iterate the Design Some More

I’m trying to understand what primitive operations are needed and where blocking
might occur, and, whether it would be easier to implement the pattern-matching
engine using features in existing languages (e.g. exceptions in Python), or to bite
the bullet and write a VM (Virtual Machine). The necessary features exist in
assembler, but, most modern languages restrict access to these features.

One thing is certain: the parser engine is a state machine that blocks, waiting for
I/O, in very specific places. Because the blocking happens in predictable places
in the code, it should be possible to make the engine be “more efficient” than
modern languages that use operating systems and threads and suffer ad-hoc
blocking. Regardless, this kind of blocking happens in modern languages, but, is
papered-over by operating systems .
11

I didn’t keep every iteration, but, here’s one:

"Sampler", [
 push_new_string,
 enter, "Sampler",
 call, "Stuff"
 append_return,
 exit, "Sampler",
 return_pop
]

"Stuff", [
 push_new_string,
 enter, "Stuff",
 begin_cycle,
 mark,
 peek, "Hello World",
 ?, [
 call, "Hello",
 append_return,
 continue,
 mark,
 peek_eof,
 ?, [
 break
 end_cycle,

 Note that operating system documentation tends to describe the lifetime of process in terms 11

of state machines (idle, running, blocked, etc.). What is being discussed here is nothing new,
but, only a different way of looking at the same problems.

10

 exit, "Stuff",
 return_pop
]]]

"Hello", [
 push_new_string,
 enter, "Hello",
 expect_and_append, "Hello World",
 ?, [
 exit, "Hello",
 return_pop
]]

“?” marks the spots where blocking might occur. The bytecodes following the “?”
are enclosed in [...], which is a way of specifying continuations of code that run
after a block sequence is resumed.

My question, here, is whether blocking should be reflected in the DSL syntax, or if
we say that every operation with the prefix “peek” can block. Or ...?

I’m not sure that I like either of the above two choices - explicit operator “?” or
implicit operations with a special prefix.

Drawing diagrams of the above might help understand the Design issues... On to
step 4.  

11

Step 4. Iterate Again, This Time Drawing Diagrams of the State Machines

I want to further ponder this design space. I start by making drawings.

Here is the most simple state machine representing blocking I/O in this system:

Question: what “state” do I need to save in order to resume the parser engine
after I/O has been received?

The problem, here, is that this blocking happens deep in the bowels of the code
and requires different resumption continuations at each point.  

12

Next, I try labelling each “yield” with some unique identifier to help figure out
which continuation needs to be resumed:

Here, I make the revelation that “yield” is only called if I/O blocking is required. If
the necessary characters are already in the cache, then we can continue without
blocking.

I had drawn explicit transitions out of each state directly to the next state, to
show non-blocking transitions. I erased those transitions when I realized that the
non-blocking condition could be faked by inserting a “continue” message at the
front of the queue, and calling the message handler for the engine.

I’m not sure that this is such a good idea. In general being explicit usually wins
out.  

13

Next, I draw out the state machine in full glory, as a flat machine:

This diagram looks wildly more complicated and less succinct than the DSL code
written out as text, but, it does show some interesting patterns.

In all three boxes, the blocking operation and the state transitions due to blocking
take up the most real-estate, but, the pattern is essentially repeated in each of
the 3 cases.

Can we visually elide the blocking state and transitions?  

14

This next diagram attempts to elide the blocking operations:

This suggests and incorporates a couple of twists:

- The gray bubble represents elided blocking. The number in the bubble
represents how many characters will be needed (fewer if end-of-input is
reached).

- Only the 1st and 3rd boxes can error out. The 2nd box will never error out. This
isn’t obvious - to me - from the textual description at the left.

- The diagrams look a lot less busy. I’m beginning to like them more than the
textual representation. The diagrams show a lot of details that aren’t explicitly
shown in the textual version. I think that that is a good thing.

- An “optimization” is apparent. We can ask for multiple characters at once and
avoid asking for them one-by-one.

15

- The boxes look like they are pointing towards the kind of information we would
need to store - on a stack - in order to be able to resume the engine after
blocking.

- The textual representation of cycle <<<...>>> disappears and gets handled by
state transitions. Less syntax. Is this good, or will it become clunky when used
on larger examples? [Further testing of the ideas using larger and larger inputs
will help determine the answer].

- The top-most diagram looks plug-able. We will see when we get to a use-case
that needs pipelines.

- Even if I decide on a text-only syntax for this stuff, diagramming the problem
space has helped me see aspects that weren’t apparent.

--- I’m going to stop here and try to document my progress up to this point. More
pondering is still required, but, I like the direction this is heading in. ---

16

Appendix - See Also

17

See Also
References https://guitarvydas.github.io/2024/01/06/References.html
Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/programmingsimplicity
Videos https://www.youtube.com/@programmingsimplicity2980
[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join)
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	Goal
	Why?

	Composing Software using SoftWare Interlocking Blocks (SWIBs)
	Step 1 - A Parser for XML in Raw Python
	Step 2. Iterate, Design a New SWIB Receptor Syntax
	Step 3. Iterate the Design Some More
	Step 4. Iterate Again, This Time Drawing Diagrams of the State Machines
	Appendix - See Also

